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Stripping column
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Random packing separation efficiency (ex: I-Ring)

Rate-based approach
Kg=mass transfer coeff.
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Conditions

Diameter: 0.3 m, Bed height: 2.25 m
Liquid concentration: 4% NaOH
Conversion to carbonate (Na_CO,). < 1%
Inlet gas concentration: 400ppm CO,
Temperature: 25 °C
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Equilibrium-stage approach
HETP=height equivalent to a theoretical plate
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Valid for atmospheric distillation with standard organic test mixture
at total reflux.

F-factor :F =u,/pg m kg
s \'m

HETPF, inches
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Absorption

Orange=known variable A=solute
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Determination of the 3 unknowns

G, L) Xpq
Mass balance on carrier gas
G, (1-
Gl(l_ YA1): Gz(l— yAZ):> G, = 1( yAl)
(1_ yAZ)

Total mass balance
Mass balance on solute

L1XA1 T Gz Yaz = L2XA2 T G1YA1
L2XA2 T GlyAl B Gz Ya2

L,

— Xp =



Absorption: use of molar ratios

G, Yar L, 5 Xao
G’; Yy L' Xa

sl ==1+~

Operating line

Ll

e N | YA:YA2+_(XA_XA2)
: : G
- : : - Molar ratios Solvent and
G,’_yA ----- e — L,’_XA carrier gas
G’; YA L’ ; XA vV - Ya flowrates
" l-y, | |L'=L-x,)
T X, ||G'=G{d-y,)
X, =

Gy Va1 Ly 5 Xaz 1-X,
G ;Y,, L Xy,




Effect of solvent flowrate on x,

Y1

Yo

) (LZ/Gl)m n
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Effect of solvent flowrate on X,

(L' / Gl) = Yl - Y2 Where X, . IS at
min X1 - X , equilibrium with Y,
P LLc
/G’
- i
N
P
i 5 > X
X2 Xl X]_ Xl,max



Absorber design (column height)

Control volume=gas phase

z+dz +

A

A
Gly JLx
: I
g
)
|
G+dG | y+dy | L+dL | x+dX |
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Absorber design (column height)

Mass balance on solute in gas phase

ouT ouT

IN (convection)  (convection) (mass transfer)

\
( \

IGy+d(Gy)|s = GyS + N,dA @

Total mass balance on gas phase

OuT ouT

IN (coAnvection) (convection) (mass transfer)
\

(
(G+dG)S = GS + N dA ©
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Absorber height design equation

22> SdG=N;dA=t,N,Sadz=dG=t,N,adz

(1> (Gy + Gdy + ydG)S =GyS + N, aS dz
Gdy+ydG =N, adz
Gdy+yt,N,adz= N, adz

Joz=p -]

N a(l t,y)
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Absorber height design equation

The same approach based on differential
mass balances on the liquid phase leads to:
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General equations for absorber height
based on individual film resistances

hT _ yfl G (Yf)A dyA
kg aP 1_tAyA Ya— Yai

Ya2

hT _ Xfl I— (Xf)A dXA
klc_) aIBI\/I 1_tAXA Xai — Xa

X2




Equations for absorber height based
on individual film resistances (UMD)

Ya1

hT J‘ BM dyA
ke aP 1 Ya Ya—Ya

Ya2

h - Xj“ Xoy  OX,
kiapy 1—X, Xu—X,

Xa2




Effect of L/G on driving forces at
column bottom

y
A Zero
. < driving force
i (x; and y, at
g equilibrium)
i > X
X1
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Effect of L/G on individual driving
forces in column
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Effect of L/G on overall driving
force in column




Effect of L/G on overall driving
force in column




HTU and NTU concepts (gas phase)




HTU and NTU concepts (liquid phase)

w |
hT—Xj 2
hT Xfl X;M dXA

0 *
Kor@apy 1=X, Xy =X,

Xa2




HTU and NTU concepts

h. =HTUxNTU

h- =H_ x N,

= Hog X Ngg
- =H, xN,

1 =Hg xNg,




Dilute cases

N, - | o _yf dy,
YA21 yA yA yA| YAz yA yAI
oo = | o _yf dyA
OG
YAzl yA yA A YAz yA

Xa1 Xa1

NL—JX —I
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Overall film resistances

G G L
Ko @P keaP  klap,

Lo

1 m H
< =k0+k0_p = Hos =He +5-
oG G Lpl\/I
L L G
S ap, Icap,  Klap

Lo N

KO :ko+kcl)0rl\n/lp = Hg =H_+AxHg

OL
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Dilute cases: Colburn approach

When equilibrium and operating lines are straight

GAS PHASE LIQUID PHASE
i 9 0 T G A
— MX — MX
NOG _ A Y, 2 NOL _ Y1 1
A-1 1-A
HOG:HG+i HO|_=H|_+AHG
A hT — HOLNOL

hT — HOGNOG L

L A=—
A=_— mG

mG
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Dilute cases:

Mean driving force approach
When equilibrium and operating lines are straight

Yi— Y,
(y o y*)LM
(y=y¥ =y -y-y),

NOG =

n (Y=Y
(Y-¥),

H
Hos = Hg "’TL

hT = HOGNOG

Xl_XZ

(X*_X)LM

_ (x*X), — (X*-x),

NOL —

—

X*_X)LM

In (X*_X)l
(X*_X)z
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Ya1

dy ,

2-film theory h = I 2-film theory
gas-film N X! 1-— tAyA overall gas-film
resistance Va2 resistance
h, = y.fl G (Yi)a dy , h, = ij G (Yf*)A dy ,
o, Ko @P 1=ty Ya—Va v Ko @P 1=1,Y, Ya—VYa
UMD UMD
h - yj“ G Yeu Gy, PG yeu dy,
i Ko 8P 1=y, Ya—Vyau i KSgaP 1=y, v, -V,
Const. HG\ Const. Hyg
T Yo Ay, T oyew  dy,
hy =Hg J- 1 h =Hgg *
Yo —Ya Ya—Yai yAzl— Yo Ya—VYa
Dilute case Dilute case
y
Al dy Ya1 dy
h, =Hg 3 =H o
Yo yA_yAi hT OGy-[Z yA_yA
y*=mx ; const. m
Vv
Ya—Y
hy =Hgg —A In (A 1) Yo~ M, -|—£ Ny =Heg (—)Al *Az
A-1 A Y2_mxz A yA_yA LM | 29




Xp1
2-film theory h, = j L dx, 2-film theory
lig.-film X N A8 1-— t, X, overall liq.-film
resistance a resistance
h - f L (X¢)a  dx, h - I L (X{)a dx,
klapy 1-t,Xy Xp—Xa o K3 ap, 1-t,X, X,—X,
UMD UMD
Xa1 Xa1 *
L XBM dXA h-l- J’ XBM dXA
A
. KLapy 1=X, Xo—X, Xay KgLapM 1-X, X, —X,
Const. HL Const. Hy,
Xa1 XL *
h =H J’ dx, h = H ¢ Xay dx,
— oL *
xA21 Xa Xpi = Xa o 1=Xy Xy —X,
Dilute case Dilute case
X
Al dX Xp1
h =H, H j
XA| Xp hT OLXA2 X — X,
y=mx*; const. m
7
1 —mX Xpg =X
hT — HOL—In (l—A{yl 2)+A hT — HOL *Al A2
1-A Y — My Xp = Xp LM | 30




Rigorous procedure to calculate column height

Overall gas phase driving force

h =

Ya1

I

Ve 0¥,

Va2 KSGaP 1-Y, Ya—

G' yf Ve

KésaPy,, (1-

Y
dy,

' y
G Al

KocaP

| f(y,)dy,

Ya2

YA)2 Ya—

Y
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Rigorous procedure to calculate column height
Overall gas phase driving force

*Chose values of y between y, and y,
*For each value of y (including y, and y,), calculate f(y)
Integrate f(y) numerically between y, and y,

X =2 -¥,)+ X, Y= £ (%)

y » Y » X » X > y*
L fy)=Jom |
! L-yFly-vy’)

.: f(y) y*
T(y) ™
e = Kf'ap [ 1(y)dy
| f(y)dy L
D S S S Yy L&
Yo Y1

S S T S A B 32



Rigorous procedure to calculate column height
Individual gas phase driving force

G d
hT :J‘ 0 Yem Ya
Ya2 kc; aP 1- yA yA o yA,i
G Ry dy,
=— .
ke @aP v, 0=Ya) Ya—VYa,
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Rigorous procedure to calculate column height
Individual gas phase driving force

kg p(y_ Yi) kE,EM (Xi — X);O

G, yBM XBM
x :F(Y _Y2)+X2 yi = feq(xi)
y » Y » X » X yl
"" A f = yZBM v
! £ (y) R vy
::;.I:(y) yBM
G Y1
= ia j f(y)dy
|| £ (y)dy 1 o
S S S "y
Yo ' Y1
4 4
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Procedure to calculate column performance
Individual gas phase driving force

known

\@: yj“ G Yeu Oy,

kgaP 1-y, Ya—VYa

unknown

Ya1
Procedure : Change y,, until h; = J' G Yew _ 0y,

Ya2 kg abP 1- YA yA_yAi
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Procedure to calculate column performance
Individual gas phase driving force

Yar =
Y a2 (QUESS)

Guess Y,

T Ya2 kgaP 1_YA Ya—Yai

No = new guess

WhereYA =Y,, +£(XA _ XAZ) and Yo = (1_ yA)_(l_ yAi)
G

Integral can be solved numerically as described in previous slides
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How to measure H. (part 1)

Run experiments in absorber under conditions where only
the gas film controls mass transfer:

-Absorption or desorption of very soluble gas2m 4
*Or evaporation of pure liquid

HmG
L
SOME CONCENTRATION PROFILES:

> Hoe =Hg + Hg

Absorption low m: Evaporation of pure liguid:

X
__ Driving

force Yi=y ;
 — Driving force
|

< Masstanster |




How to measure H (part 2)

*Measure column height.

where N, =

Y1

Y2y y

Y1

dy

jy—feq(x)

*Measure flowrates and concentrations at column inlet and outlet.
*Integrate inverse of overall driving force between y, and y, to obtain Ngg
but if eq. line in straight use Colburn eqg. or mean driving force eq.

Yo ‘ ‘Xz

v
1‘ le
G

y

L

Op. line (slope L/G)

Eq. Line; y*=

Driving
force

X1

> X

38
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How to measure H, (part 1)

Run experiments in absorber under conditions where only
the liquid film controls mass transfer:

«Absorption or desorption of low solubility gas=>m T
*Or absorption of pure gas

H.L
> |H, =H +—-=H
oL L mG L
CONCENTRATION PROFILES
Desorption low solubility gas: Absorption pure or low solubility gas:
y : Yi
.. |
Driving . = x*

force

|
Driving force {:
: X

| Mass transfer >




How to measure H, (part 2)

h, T dXx

HL=HOL=N—OL where NOL—IX — Ifeq(y) "

*Measure column height.

*Measure flowrates and concentrations at column inlet and outlet.
*Integrate inverse of overall driving force between x; and x, to obtain Ny,
but if eq. line in straight use Colburn eq. or mean driving force eq.

L X Op. line (slope L/G)

Yo | ‘ X2
A Eqg. Line
X*=Teq(Y)

> X

—_
X R X* X

G Driving force v



Short-Cut method for concentrated cases
with non-linear equilibrium line*

Approach:

Integrated following equation with various non-linear equilibrium lines and
varying flowrate ratios (L/G) for hundreds of hypothetical cases.
Calculated the effective values of m (m) and L/G (R,,) to use in Colburn’s
equation in order to obtain the same result.

Ya1 d
OG _ J‘ YA
Ya2 yA

*C. R. Wilke and U. von Stockar, Absorption, in Encyclopedia of Chemical Technology, Vol. 1,
Kirk-Othmer (Eds.), Wiley, New York, 1978.
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Short-Cut method for concentrated cases
with non-linear equilibrium line

av

where m and R, are obtained from correlatio ns

m = f(mz’mc’ f’yl’yZ)
Rav = f(Rl’RZ’ f’yl’yz)

*

where f :ﬁ;Rlzi;R2 :i
Y1 G, G,

Hoo=Hg +H, -

av

In{(l_ FT jt yl_TXZ j+ Rm }
—MX _
Nog = Y yz_ i Y2 40.5In —1 Y2 )/
1_Rﬂ Y

Correlations in charts 5.8a, 5.8b and 5.9

Corrective
term due to
fact that real
equation is:

Ya1

i d
N, = J‘ Yem Ya *
yAzl_ Ya Ya—Ya

42



Short-Cut Method

Equilibrium line with increasing slope

y Op. line

X2 X1

Correlation in chart 5.8a
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Short-Cut method for concentrated cases
with non-linear equilibrium line

Effective slope for equilibrium lines with increasing slope
I l

“| chart5.8a S
' LT e
2.6 /] Sé“')/ //
24 /, /,/g//lg'g/ =]
2.2 08 S
A
g 1.8 // / ///40-5/ —
A = i SV e =
— L T
i 2o
T 1o / ////
os| N2
/7
0.4
0.2
0
0 10 20 30 40 50 60 70 80

m]
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Short-Cut Method

Equilibrium line with decreasing slope

A Op. line

X2 X1

Correlation in chart 5.8b 45



Short-Cut method for concentrated cases
with non-linear equilibrium line

Effective slope for equilibrium lines with decreasing slope
| ! | | | | I -

osl Chart 5.8b 0y -

0.9
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Short-Cut method for concentrated cases
with non-linear equilibrium line

Effective flow ratio for L’'/G’ > 1
2T T T T T T T T T T T T T

chart 5.9 09

o1+ 1t ¢ 1t b1

0 02 04 06 08 10 12 14 16 18 20 22 24 26 28 30

[Ez. - EI 47
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Eq.-stage vs mass transfer approaches*
Absorption: high solubility cases

 Example: absorption of acidic solute in basic
solution =» zero acid solute volatility (y* ~ 0)

* In this extreme case, eq.-stage approach:
— Predicts 100% absorption with 1 stage
— Predicts slightly less than 1 eq. stage

— Creates illusion of easy absorption and short
column (neglects decrease in driving force)

— Is ineffective for design

*K. Graf, Chemical Engineering, “Determining packing
height with accuracy”, 10/2011, pp 55-62. 18



Eq.-stage vs mass transfer approaches

Absorption: high solubility cases
 Mass-transfer approach must be used:

Y,

Noo = |-

Y2 y y
=Y exp(—

1

-

Yo

oc)

-1

Y1

Y,

J

* Nog>NTS! (next slide)

49



Eq.-stage vs mass transfer approaches

Absorption: high solubility cases

NOG

3
7
6 T~
5 T~
T~
4 T~
3 T
2 ibinat
1
0
0.001 0.01 0.1

Non-absorbed fraction, y,/y,
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Adiabatic Absorption

_L; T2 Xa

I
—— Heat balance

-L; T, Xa

LS(_:PL(TL _TLZ) LSA H( A2)

A . H
=(T)=Tp, + =2 (X, X,o)
CpL

51




Adiabatic Absorption

Effective equilibrium line
Global gas




Y1

Yo

Adiabatic Absorption

Effective equilibrium line

. . I — o
Increasgd slope_ of op.line: ____ e 30°C
separation feasible -
7 —_— - 25°C
// —
s ~ 7
Ve P
7 -
// /// _——— 20°C
7/ 7
/// .
7,0 === _——+—— 15°C
Ve e -
7 7 ///
e -
B 7 s =
RS d . X .
% Op. line for 15°C: separation unfeasible

> X
X2 Xl 53



Procedure to calculate column height

Individual gas phase driving force, adiabatic absorption

()

kg p(y_ Yi)_ kl(_)IBM (Xi _X) 0

T =T,+—2% (X_Xz) Yem Xgm
o yi = 1:eq (Xi’TL)
Yem
f(y)=
L-y)y(y-v)
YBm
G| Y1
hy =——| f(y)dy

keap -[

Yo
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Effective equilibrium lines
Heat and solvent evaporation effects

y

A

™\ Adiabatic

Absorption and
solvent evaporation .

Isothermal




Heat and solvent evaporation effects

condensation - evaporation

25+

Temperature °C

=
2
[=]
=
L
-
=4
5
=
@
5
&n
= .
2 0 :
0 0z 04 08 OB 1O
Tep Baottom

56
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Heat and solvent evaporation effects
liquid

AN
—> = solute flux

——> = solvent flux

uoljesuspuo)

uoinjeiodeny

gas 57



Shortcut Method for Estimating Equilibrium
Line of Non-Isothermal Absorbers

TL — TL,2 + (TL,l _TL,Z)X N T 74.34 (X h.o74 - X 11'114)4'me

Xy = L
N XA,l . XA,2 From correlation in article
dT G, | H \

G,2 L,2 [dXA : L2 HOG,A A2 A,2
(ﬂj _ I—2Hos _GszmB,z

dx dm

A2 LZCpL,Z o Gche,z B Hv(l_ XA,z) :
dT, ,

Von Stockar, U. and Wilke, C.R., Ind. Eng. Chem. Fundam., Vol. 16, No. 1,
1977 (94-103) 58



Shortcut Method for Estimating Equilibrium
Line of Non-Isothermal Absorbers

Definitions

GC g _ .
= = Gas phaseheightof aheattransferunit
a
G

I

G.Q

H,. Integralheatof solution forsolute
H, Latentheat for puresolvent

C,. Meanmolar heatcapacityof liquid
C

.« Meanmolar heatcapacityof gas

m, Solvent "solubility"= Y&
Xq .



