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Random packing separation efficiency (ex: I-Ring) 

Equilibrium-stage approach 

HETP=height equivalent to a theoretical plate 

Rate-based approach 
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









3
:factor-F

m

kg

s

m
uF G



6 



Absorption 
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Orange=known variable 
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Determination of the 3 unknowns 
G2, L1, xA1 
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Absorption: use of molar ratios 
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Effect of solvent flowrate on x1 
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Effect of solvent flowrate on X1 
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Absorber design (column height) 
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Absorber design (column height) 
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Mass balance on solute in gas phase 
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Absorber height design equation 
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Absorber height design equation 
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General equations for absorber height 
based on individual film resistances 

AiA

A

AA

Af

y

y

o

G

T
yy

dy

yt

Y

Pak

G
h

A

A


  1

)(1

2

AAi

A

AA

Af

x

x M

o

L

T
xx

dx

xt

X

ak

L
h

A

A


  1

)(1

2


16 



Equations for absorber height based 
on individual film resistances (UMD) 
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Effect of L/G on driving forces at 
column bottom 
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Effect of L/G on individual driving 
forces in column 

19 

x 

 y 

 xi  xi 

yi 

yi 

y 

y 

 x 



Effect of L/G on overall driving 
force in column 
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Effect of L/G on overall driving 
force in column 
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HTU and NTU concepts (gas phase) 
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HTU and NTU concepts (liquid phase) 
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HTU and NTU concepts 
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Dilute cases 
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Overall film resistances 
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Dilute cases: Colburn approach 
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Dilute cases: 
Mean driving force approach 

When equilibrium and operating lines are straight 
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Rigorous procedure to calculate column height 
Overall gas phase driving force 
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Rigorous procedure to calculate column height 
Overall gas phase driving force 
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Rigorous procedure to calculate column height 
Individual gas phase driving force 
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Rigorous procedure to calculate column height 
Individual gas phase driving force 
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Procedure to calculate column performance 
Individual gas phase driving force 
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Procedure to calculate column performance 
Individual gas phase driving force 
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How to measure HG (part 1) 
Run experiments in absorber under conditions where only 

the gas film controls mass transfer: 

•Absorption or desorption of very soluble gasm 

•Or evaporation of pure liquid 
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Absorption low m: Evaporation of pure liquid: 

Mass transfer Mass transfer 37 



How to measure HG (part 2) 
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•Measure column height. 

•Measure flowrates and concentrations at column inlet and outlet. 

•Integrate inverse of overall driving force between y1 and y2 to obtain NOG, 

but if eq. line in straight use Colburn eq. or mean driving force eq. 
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How to measure HL (part 1) 
Run experiments in absorber under conditions where only 

the liquid film controls mass transfer: 

•Absorption or desorption of low solubility gasm 

•Or absorption of pure gas 

L
G

LOL H
mG

LH
HH  

CONCENTRATION PROFILES 

x 

yi y 

xi = x* 

Driving force 

Mass transfer 

y 

xi = x* 

x 
yi 

Driving 

force 

Desorption low solubility gas: 

Mass transfer 

Absorption pure or low solubility gas: 
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How to measure HL (part 2) 

 
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2
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where
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x

x eq

x

x

OL
xyf

dx

xx

dx
N

OL

T
OLL

N

h
HH 

y1 x1 

y2 x2 

hT 

G 

L 

•Measure column height. 

•Measure flowrates and concentrations at column inlet and outlet. 

•Integrate inverse of overall driving force between x1 and x2 to obtain NOL 

but if eq. line in straight use Colburn eq. or mean driving force eq. 

x 

 y 

 x2  x1 

 y2 

 y1 

Op. line (slope L/G) 

Eq. Line 

x*=feq(y) 

 x 

 y 

 x* 

Driving force 
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Short-Cut method for concentrated cases 
with non-linear equilibrium line*  

41 


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OG
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Approach: 

Integrated following equation with various non-linear equilibrium lines and 

varying flowrate ratios (L/G)  for hundreds of hypothetical cases. 

Calculated the effective values of m (    ) and L/G (Rav) to use in Colburn’s 

equation in order to obtain the same result. 

m

*C. R. Wilke and U. von Stockar, Absorption, in Encyclopedia of Chemical Technology, Vol. 1, 

Kirk-Othmer (Eds.), Wiley, New York, 1978. 



Short-Cut method for concentrated cases 
with non-linear equilibrium line  
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Correlations in charts 5.8a, 5.8b and 5.9 42 
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Short-Cut Method 
Equilibrium line with increasing slope 

x 

 y 

 x2  x1 

 y1 
* 

 y2 
* 

mC 

m2 

 y2 

 y1 

Op. line 

Eq. line 

Correlation in chart 5.8a 43 



Short-Cut method for concentrated cases 
with non-linear equilibrium line  

44 

Effective slope for equilibrium lines with increasing slope 

chart 5.8a 
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Short-Cut Method 
Equilibrium line with decreasing slope 

x 

 y 

 x2  x1 

 y1 
* 

 y2 
* 

mC 

m2  y2 

 y1 

Op. line 

Eq. line 

Correlation in chart 5.8b 45 



Short-Cut method for concentrated cases 
with non-linear equilibrium line  
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Effective slope for equilibrium lines with decreasing slope 

chart 5.8b 



Short-Cut method for concentrated cases 
with non-linear equilibrium line  
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Effective flow ratio for L’/G’ > 1 

chart 5.9 



Eq.-stage vs mass transfer approaches* 

• Example: absorption of acidic solute in basic 
solution  zero acid solute volatility (y* ~ 0) 

• In this extreme case, eq.-stage approach: 

– Predicts 100% absorption with 1 stage 

– Predicts slightly less than 1 eq. stage 

– Creates illusion of easy absorption and short 
column (neglects decrease in driving force) 

– Is ineffective for design 
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Absorption: high solubility cases 

*K. Graf, Chemical Engineering, “Determining packing 

height with accuracy”, 10/2011, pp 55-62.  



Eq.-stage vs mass transfer approaches 

• Mass-transfer approach must be used: 

 

 

 

 

• NOG>NTS! (next slide) 
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Absorption: high solubility cases 
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Eq.-stage vs mass transfer approaches 
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Absorption: high solubility cases 
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L; TL2; xA2 

L; TL ; xA 

Heat balance 

Qabs 

Adiabatic Absorption 

   
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Adiabatic Absorption 
Effective equilibrium line 

 y 

x 
 x1 

20°C 

15°C 

25°C 

30°C 

 y2 

 x2 

 y1 
op. line 

Global gas 

Individual gas 
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Adiabatic Absorption 
Effective equilibrium line 

 y 

x 
 x1 

20°C 

15°C 

25°C 

30°C 

 y2 

 x2 

 y1 

Op. line for 15°C: separation unfeasible 

Increased slope of op. line: 

separation feasible 
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Procedure to calculate column height 
Individual gas phase driving force, adiabatic absorption 
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Effective equilibrium lines 
Heat and solvent evaporation effects 

x 

 y 

Absorption and 

solvent evaporation 

Adiabatic 

Isothermal 
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Heat and solvent evaporation effects 
 evaporation condensation 
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Heat and solvent evaporation effects 
 

= solute flux 

= solvent flux 

gas 

liquid 

Evap
o

ratio
n

 

C
o

n
d

e
n

satio
n

 

tA>1 

tA=1 

tA=0 

tA<0 



Shortcut Method for Estimating Equilibrium 
Line of Non-Isothermal Absorbers 
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Von Stockar, U. and Wilke, C.R., Ind. Eng. Chem. Fundam., Vol. 16, No. 1, 
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From correlation in article 



Shortcut Method for Estimating Equilibrium 
Line of Non-Isothermal Absorbers 
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Definitions 


